All functions

MeanFormulas()

Create list of formulas for expected read numbers

PulseData()

Create an object for pulse-change count data

addDefault()

Add default options if unset.

addKnownToFormulas()

Evaluate formulas in the environment of known params from the conditions

amount()

Create a formula object for the initial RNA level.

amount_()

Create a formula object for the initial RNA level.

ciGene() ci()

Estimate confidence intervals

constructFormulas()

Evaluate formulas according to parameters, given in the condition data.frame

contaminate()

Generate a new formula as a mixture of two

degrade()

Create a formula for RNA degradation

degrade_()

Create a formula for RNA degradation

evaluateLikelihood()

Computes logarithm of the likelihood function

fitParams() fitParamsSeparately() fitNormFactors() fitModel()

Fit model parameters

generateTestDataFrom()

Create a test count data

grow()

Creates a formula which describe evolution of RNA concentration

growFrom0()

Creates a formula which describe evolution of RNA concentration if the initial amount is 0.

grow_()

Creates a formula which describe evolution of RNA concentration

guessMeans()

Estimate initial guess for the mean expression level

initParameters()

Initialize first guess for the parameters

ll()

Creates a likelihood function for given parameter names

llnormFactors()

Create a likelihood function for optimisation of normalisation factors

multiplyList()

A helper to generate named lists

normaliseBoundaries()

Shape boundaries for the parameters in formulas.

normaliseNormFactorBoundaries()

Shape boundaries for the normalisation factors Create lower and upper boundaries with the same structure as the list of normalisation coefficients interSampleCoeffs in the PulseData object.

plotPL()

Plot the profile likeliihood

predictExpression()

Calculates mean read number estimations

profileGene() profile()

Estimate profile likelihood for gene parameters (all other fixed)

plGene() pl()

Return a profile likelihood function for further use.

pulseRFractionData

An example of count data for an experiment without spike-ins

pulseRSpikeinsData

An example of count data for an experiment with spike-ins

runPL()

Compute profile likelihood on the interval

setBoundaries()

Set optimization boundaries for the model parameters.

setFittingOptions()

Specify fitting options

setTolerance()

Set the stopping criteria in a form of the absolute changes during fitting iterations.

shrinkList()

Leave only one item per name